Math 53, Discussions 116 and 118

Vector functions

Questions

Question 1 (Adapted from an exercise on the current homework). Consider the trajectory

$$\mathbf{r}(t) = \langle \cos t, \sin t, t \rangle.$$

- (a) Find the acceleration $\mathbf{a}(t)$.
- (b) Decompose the acceleration as the sum of a tangential vector and a normal vector.

Note that the actual textbook problem only asks for the tangential and normal components of acceleration (which are

HW problems

Here are a couple of problems from the current assigned homework. Consider if you'd be willing to present a solution to one of them at the board!

Problem (§13.1 #29). Find three different surfaces that contain the curve

$$\mathbf{r}(t) = 2t\mathbf{i} + e^t\mathbf{j} + e^{2t}\mathbf{k}$$

Problem (\$13.2 #25). Find parametric equations for the tangent line o the curve with the given parametric equations at the specified point.

$$x = e^{-t} \cos t$$
, $y = e^{-t} \sin t$, $z = e^{-t}$; (1,0,1)

Problem (§13.2 #49). Find f'(2), where $f'(t) = \mathbf{u}(t) \cdot \mathbf{v}(t)$, $\mathbf{u}(2) = \langle 1, 2, -1 \rangle$, $\mathbf{u}'(2) = \langle 3, 0, 4 \rangle$, and $\mathbf{v}(t) = \langle t, t^2, t^3 \rangle$.

scalars) and you could compute them directly using the formulas in the book skipping (a).

Question 2. A cannon has the ability to fire a projectile at a fixed speed v but at an adjustable angle θ measured with respect to flat ground. If the goal is to have the projectile land as far away as possible, what is the optimal angle θ ?

Assume that the acceleration experienced by the particle at all times is (0, -g) where g is a constant. Here x is the horizontal coordinate and y is the vertical coordinate.